N98-11944

SYSTEM DIAGNOSTIC BUILDER

Joseph L. Nieten
GHG Corporation
1300 Hercules, Suite 111, Houston, TX 77058

Roger Burke
NASA,JSC
DK42, Houston, TX 77058

ABSTRACT

The System Diagnostic Builder (SDB) is an automated software verification and validation tool
using state-of-the-art Artificial Ir\telligence (AT technoloFies. Original{lgr developed by GHG
Corporation of Houston, Texas, the SDB is used extensive S:y by project BURKE at NASA-JSC as
one component of a software re-engineering toolkit. The SDB is applicable to any government
or commercial organization which performs verification and validation tasks.

The SDB has an X-window interface, which allows the user to ‘train” a set of rules for useinarule-
based evaluator. The interface has a window that allows the user to plot up to five data
parameters (attributes) at a time. Using these plots and a mouse, the user can identify and
classify a particular behavior of the subject software. Once the user has identified the general
behavior pattern of the software, he can train a set of rules to represent his knowledge of that
behavior.

The training process builds rules and fuzzy sets to use in the evaluator. These rules are built
using a special implementation of the ID3 algorithm. The fuzzy sets classify those data points
not clearly identified as a particular classification. Once an initial set of rules is trained, each
additional data set given to the SDB will be used by a machine learning mechanism to refine the
rules and fuzzy sets. This is a passive process and, therefore, it does not require any additional
operator time.

The evaluation component of the SDB can be used to validate a single software system using
some number of different data sets, such as a simulator. Moreover, it can be used to validate
software systems which have been re-engineered from one language and design methodology
to a totally new implementation.

163



Theory of Operation

The System Diagnostic Builder (SDB) uses an

inductive machine learning technique to
enerate decision trees from data sets classified
y a Subject Matter Expert (SME).

The primary objective of the SDB is to capture
system knowledge from an SME. This process
i5 known as knowledge acquisition. The
knowledge must be represented ina manner to
maximize usability. Representing the
knowledge with a rule-base enables it to be
used by a standard expert system shell or any
other rule-based system. These rules could be
used by a forward chaining system to detect
faults and/or by a backward chaining system
to identify the causes of these faults.

The SDBknowledgeacquisition processisbased
onmachinelearning techniques combined with
an X-window graphicalinterface. This interface
allows an SM%rto train a rule-base from some
number of data sets. The SME merely selects
those parameters deemed to be pertinent tothe
identigcation ofaparticular systemstate. These
parameters are then plotted on the screen, and
with a click of the mouse button, the SME
assigns some number of those data instances to
a system state. This process is repeated until
the entire data set is classified.

i

=
e
-
o
o
@
A

Figure 1

Those parameters used by the SME to classify
system behavior must be available from some

ata stream within the system. However, the
SME may require additional parametersduring
the classification process to insure accurate
identification of the system's behaviors. These

164

additional parameters will depend in some
way on those basic parameters available from
thesystem’sdatastream. Theknowledge about
these new parameters represents a whole new
areawithin thisknowledge acquisitionscheme.

Additional knowledge about derived
parameters is supplied to the SDB through the
use of a standard ASCII text file which defines
the relationships between actual system
parameters and those parameters derived from
the actual parameters. Future plans for the
SDB include the incorporation of a prolog type
dialog system to extract this Meta knowledge
from the SME.

A temperature parameter is one example of a
basic parameter used for training. Alone this
Ivaarameter may not indicate very much,
owever, when used to calculate another key
arameter, it becomes very useful. The
owledge about these calculations can either
be generic to the type of science used by the
system or explicitly added by the SME.

Once a data set is classified to the best of the
SME’s knowledge, it is submitted to an
induction routine for generation of the rule-
base. GHG has developed a special induction
algorithm to generate the required rule-base.
This new algorithm, called Turbo Induction, is
a special implementation of the ID3 algorithm.
In general, Turbo Induction enhances the
discrete logic capabilities of ID3 with functions
that map the continuous values of the system’s
parameters into discrete events. Specific
capabilities of Turbo Induction are described
later in this paper.

TheSDBhasanincremental learning capability.
Multiple SME’s can train the same data sef, or
asingle SME can train multiple data sets without
performing negative training. This is
accomplished by managing the rule-bases from
the X interface and by eliminating that SME
knowledge which causesa conflict withexisting
knowledge. At this point, this process is done
without consulting the SME. Future versions
will provide a dialog capability to inform the
SME of existing conflicts in the training domain
for that system and request clarification froma
‘super’ SME. :

e

HE AT 0000 000 00000 P U0 TR 1114 1 O MDA N TR 01 0

A



Turbo Induction

Induction is a process where rules are
automatically generated fromaset of examples.
ID3 is an induction algorithm developed by
J.R.Quinlan. This algorithm analyzes data sets
and recursiveli/‘ creates a decision tree. Each
pass through the algorithm, a single attribute
tobe analyzed is chosen and abreakpoint value
is calculated. This breakpoint is the largest
inflection point. Anodeisadded tothe decision

tree identifying the values on both sides of the

breakpoint.

This approach depends heavily on the choice
of attribute at each pass. A bad choice of
attributes yields a set of rules that are
unnecessarily complex. This approach also
assumes that optimal decisions are made from
existing data. There are no provisions for data
provided by an SME during the operation.

While the ID3 algorithm works very well for
discrete parameters and data, current
implementations do not extend that success
into the domain of continuous functions.
Extremely large and noisy data sets produce a
computationa nightmare. For thisreason, GHG
CorForation has developed it’s own
implementation of the ID3 algorithm, with
specific emphasis on training rules from very
large and noisy data sets. Thisimplementation
is called Turbo Induction.

Several methods have been researched to
eliminate the effects of noise on the induction

rocess. One method took random samples
rom the data set and performed induction on
only those data points. This method became
less effective as the size of the data set grew.
Analysis revealed that the density of those
values whichindicated particular pathsthrough
the decision tree became saturated, and actuaﬁy
diluted the other paths having less data points
to support them. This is unacceptable when
training a validation system.

Turbo Induction analyzes data sets using a pre-
rocessor methodology. It performs localized

induction and then maps those results into a

final iteration that yields aset of discrete events.
Thus, mapping the values from continuous
functions into some number of discrete states
(membership in a set). These sets are
constructed and populated based on all

knowledge about the system.

Turbo Induction has a procedure to add those
parameters deemed important to the
construction of areliable rule-set. A supersetof
additional parameters must first be created.
These parameters are analyzed during the pre-
processor phase todetermine their contribution
to the final decision tree.

Applications

Currently, Project BURKE at NASA-JSCis using
theSDB to Verify and Validate (V&V) theShuttle
Mission Simulator (SMS).

The SDB is used to train rule-bases for each
single system within the SMS. Each of these
systemshasit’sown data parameterstoindicate
if's behavior. An SME from each system trains
asetof rules using data collected from the SMS.
The SME also trains a set of rules using data
collected from an actual flight or from another
simulation which has already been certified

_ (some kind of baseline).

Each of these rules is tested to determine it's
accuracy level. Inthe event the generated rules
arenotaccurateenough, the SMEhas the ability
to refine the training and regenerate the rules.
Once a valid set of rules exists for both the SMS
and the baseline system, the sets of rules are
combined to form a rule-base for the subject
system.

Simulation Flight
Data Data
g0 O

F ten

so8 @ Expent s»B %
i )
e e
Simulation TTight
Rules Rules

Figure 2



The verification and validation process is done
passively. An operator can start a background
process to observe the SMS data stream and
classify the behavior of each data instance in
real-time. This mode does not require an
operator to monitor progress, only to respond
tothe warnings. The operator canalso use data
files to compare behaviors off-line. This
approach can take more man power.

In short, an expert system shell is using the
generated rule-base toidentify the currentstate
of the subject system. As each data instance is
Fresented to the expertsystem, tworulesshould

ire: One rule from the SMS rule set and one
rule from the baseline rule set. The conclusion
of both of these rules should agree. If they do
not agree, then the expertsystem hasidentified
an inconsistency.

Inconsistencies can be attributed to several
reasons. The rule-sets may not agree due to an
actual problemoccurringin the baseline; which
was then represented in the baseline rules set.
Inthis case, the inconsistencyisattributed toan
anomaly that was not incorporated into the
simulation. However, an inconsistency can
also be an indication that the simulation has
not modeled the real world properly. This
situation is of particular interest for this
application.

TheSDB canbe used inanumber of Knowledge-
Based applications. Each of these is discussed
below.

As demonstrated in the SMS application, the
SDBcanbe used tocompare asoftware system'’s
behavior to the behavior of some baseline
system. The only requirement to perform this
kind of analysis is data; data from both the
software systemtobe analyzed and the baseline
system.

Using the SDB to V&V re-engineered code is
conceptually the same as the V&V process of a
simulator. The only difference is the source of
the baseline used for comparison. Asubject for
the baseline is already available: the original

rogram source code. This makesthe useof the

DB a perfect fit. The only difficultimay be in
the visibility of variables within the original
software. -

Other applications can make use of the rule-

166

bases generated by the SDB. The rule-base
ﬁfnerated by the SDB represents actual
ehavioral” knowledge about the subject
system. This knowledge is portable to any
other rule-based system. In particular, these
rules can be used in fault detection systems,
fault isolation _s[ystems, and Intelligent
Computer Aided Training (ICAT) systems.

One of the biggest draw backs for conventional
expert systems is the time required to extract
the knowledge from the exgﬁrt. The SDB
provides a vehicle for system knowledge to be
captured one time and reused by any rule-
based application.

Conclusion

The SDB provides a unique tool to perform
knowledge acquisition for those systems with
accessible data. The SDB also provides an
excellent platform to perform verification and
validation of conventional systems, using state-
of-the-art technology.

REFERENCE

Holland, J.H., “Escaping brittleness: the
possibilities of general-purpose learning
algorithms applied to parallel rule-base

systems”, in Machine Learning: An Al Approach,
Michalski, R.S., Carbonell, ].G. and Mitchell,
T.M. (EDs), Morgan Kaufman.

Michalski, R.S., “A Theory and Methodology
of Inductive Learning,” in%lachinel,earning: z%n
Al Approach, Michalski, R.S., Carbonell, ].G.
and Mitchell, TM. (EDs), Morgan Kaufman.

Quinlan, J.R.,, “The Effect of Noise on Concept
Learninﬁ,l” in Machine Learning: An Al Approach,
Michalski, R.S., Carbonell, ].G. and Mitchell,
TM. (EDs), Morgan Kaufman.

Quinlan, J.R., “Induction of decision trees”,
Machine Learning 1, 1.

Quinlan, J.R, “A case Sﬁldly of inductive
ic

knowledgeacquisition”, in Applicationsof Expert
Systems, éuin?an J.R., Addison-Wesley.

o W




Quinlan, J.R., “Generating production rules
from decision trees” %roceedm s 10th
International Joint Conference Art1f1c1a1
Intelligence, Milan.

O'Keefe, R., "Simulation and Expert Systems -
A Taxonomy and Some Examples”, in
Simulation, Society for Computer Simulation
San Diego.

167



